Note
Click here to download the full example code
Language Translation with TorchText¶
This tutorial shows how to use torchtext
to preprocess
data from a well-known dataset containing sentences in both English and German and use it to
train a sequence-to-sequence model with attention that can translate German sentences
into English.
It is based off of this tutorial from PyTorch community member Ben Trevett with Ben’s permission. We update the tutorials by removing some legacy code.
By the end of this tutorial, you will be able to preprocess sentences into tensors for NLP modeling and use torch.utils.data.DataLoader for training and validing the model.
Data Processing
—————-
torchtext
has utilities for creating datasets that can be easily
iterated through for the purposes of creating a language translation
model. In this example, we show how to tokenize a raw text sentence, build vocabulary, and numericalize tokens into tensor.
Note: the tokenization in this tutorial requires Spacy
We use Spacy because it provides strong support for tokenization in languages
other than English. torchtext
provides a basic_english
tokenizer
and supports other tokenizers for English (e.g.
Moses)
but for language translation - where multiple languages are required -
Spacy is your best bet.
To run this tutorial, first install spacy
using pip
or conda
.
Next, download the raw data for the English and German Spacy tokenizers:
python -m spacy download en
python -m spacy download de
import torchtext
import torch
from torchtext.data.utils import get_tokenizer
from collections import Counter
from torchtext.vocab import Vocab
from torchtext.utils import download_from_url, extract_archive
import io
url_base = 'https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/'
train_urls = ('train.de.gz', 'train.en.gz')
val_urls = ('val.de.gz', 'val.en.gz')
test_urls = ('test_2016_flickr.de.gz', 'test_2016_flickr.en.gz')
train_filepaths = [extract_archive(download_from_url(url_base + url))[0] for url in train_urls]
val_filepaths = [extract_archive(download_from_url(url_base + url))[0] for url in val_urls]
test_filepaths = [extract_archive(download_from_url(url_base + url))[0] for url in test_urls]
de_tokenizer = get_tokenizer('spacy', language='de')
en_tokenizer = get_tokenizer('spacy', language='en')
def build_vocab(filepath, tokenizer):
counter = Counter()
with io.open(filepath, encoding="utf8") as f:
for string_ in f:
counter.update(tokenizer(string_))
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
de_vocab = build_vocab(train_filepaths[0], de_tokenizer)
en_vocab = build_vocab(train_filepaths[1], en_tokenizer)
def data_process(filepaths):
raw_de_iter = iter(io.open(filepaths[0], encoding="utf8"))
raw_en_iter = iter(io.open(filepaths[1], encoding="utf8"))
data = []
for (raw_de, raw_en) in zip(raw_de_iter, raw_en_iter):
de_tensor_ = torch.tensor([de_vocab[token] for token in de_tokenizer(raw_de)],
dtype=torch.long)
en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer(raw_en)],
dtype=torch.long)
data.append((de_tensor_, en_tensor_))
return data
train_data = data_process(train_filepaths)
val_data = data_process(val_filepaths)
test_data = data_process(test_filepaths)
DataLoader
¶
The last torch
specific feature we’ll use is the DataLoader
,
which is easy to use since it takes the data as its
first argument. Specifically, as the docs say:
DataLoader
combines a dataset and a sampler, and provides an iterable over the given dataset. The DataLoader
supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning.
Please pay attention to collate_fn
(optional) that merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BATCH_SIZE = 128
PAD_IDX = de_vocab['<pad>']
BOS_IDX = de_vocab['<bos>']
EOS_IDX = de_vocab['<eos>']
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
def generate_batch(data_batch):
de_batch, en_batch = [], []
for (de_item, en_item) in data_batch:
de_batch.append(torch.cat([torch.tensor([BOS_IDX]), de_item, torch.tensor([EOS_IDX])], dim=0))
en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0))
de_batch = pad_sequence(de_batch, padding_value=PAD_IDX)
en_batch = pad_sequence(en_batch, padding_value=PAD_IDX)
return de_batch, en_batch
train_iter = DataLoader(train_data, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=generate_batch)
valid_iter = DataLoader(val_data, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=generate_batch)
test_iter = DataLoader(test_data, batch_size=BATCH_SIZE,
shuffle=True, collate_fn=generate_batch)
Defining our nn.Module
and Optimizer
¶
That’s mostly it from a torchtext
perspecive: with the dataset built
and the iterator defined, the rest of this tutorial simply defines our
model as an nn.Module
, along with an Optimizer
, and then trains it.
Our model specifically, follows the architecture described here (you can find a significantly more commented version here).
Note: this model is just an example model that can be used for language translation; we choose it because it is a standard model for the task, not because it is the recommended model to use for translation. As you’re likely aware, state-of-the-art models are currently based on Transformers; you can see PyTorch’s capabilities for implementing Transformer layers here; and in particular, the “attention” used in the model below is different from the multi-headed self-attention present in a transformer model.
import random
from typing import Tuple
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import Tensor
class Encoder(nn.Module):
def __init__(self,
input_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: float):
super().__init__()
self.input_dim = input_dim
self.emb_dim = emb_dim
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.dropout = dropout
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self,
src: Tensor) -> Tuple[Tensor]:
embedded = self.dropout(self.embedding(src))
outputs, hidden = self.rnn(embedded)
hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
return outputs, hidden
class Attention(nn.Module):
def __init__(self,
enc_hid_dim: int,
dec_hid_dim: int,
attn_dim: int):
super().__init__()
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
self.attn = nn.Linear(self.attn_in, attn_dim)
def forward(self,
decoder_hidden: Tensor,
encoder_outputs: Tensor) -> Tensor:
src_len = encoder_outputs.shape[0]
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
energy = torch.tanh(self.attn(torch.cat((
repeated_decoder_hidden,
encoder_outputs),
dim = 2)))
attention = torch.sum(energy, dim=2)
return F.softmax(attention, dim=1)
class Decoder(nn.Module):
def __init__(self,
output_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: int,
attention: nn.Module):
super().__init__()
self.emb_dim = emb_dim
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.output_dim = output_dim
self.dropout = dropout
self.attention = attention
self.embedding = nn.Embedding(output_dim, emb_dim)
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def _weighted_encoder_rep(self,
decoder_hidden: Tensor,
encoder_outputs: Tensor) -> Tensor:
a = self.attention(decoder_hidden, encoder_outputs)
a = a.unsqueeze(1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
weighted_encoder_rep = torch.bmm(a, encoder_outputs)
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
return weighted_encoder_rep
def forward(self,
input: Tensor,
decoder_hidden: Tensor,
encoder_outputs: Tensor) -> Tuple[Tensor]:
input = input.unsqueeze(0)
embedded = self.dropout(self.embedding(input))
weighted_encoder_rep = self._weighted_encoder_rep(decoder_hidden,
encoder_outputs)
rnn_input = torch.cat((embedded, weighted_encoder_rep), dim = 2)
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
embedded = embedded.squeeze(0)
output = output.squeeze(0)
weighted_encoder_rep = weighted_encoder_rep.squeeze(0)
output = self.out(torch.cat((output,
weighted_encoder_rep,
embedded), dim = 1))
return output, decoder_hidden.squeeze(0)
class Seq2Seq(nn.Module):
def __init__(self,
encoder: nn.Module,
decoder: nn.Module,
device: torch.device):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
def forward(self,
src: Tensor,
trg: Tensor,
teacher_forcing_ratio: float = 0.5) -> Tensor:
batch_size = src.shape[1]
max_len = trg.shape[0]
trg_vocab_size = self.decoder.output_dim
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
# first input to the decoder is the <sos> token
output = trg[0,:]
for t in range(1, max_len):
output, hidden = self.decoder(output, hidden, encoder_outputs)
outputs[t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.max(1)[1]
output = (trg[t] if teacher_force else top1)
return outputs
INPUT_DIM = len(de_vocab)
OUTPUT_DIM = len(en_vocab)
# ENC_EMB_DIM = 256
# DEC_EMB_DIM = 256
# ENC_HID_DIM = 512
# DEC_HID_DIM = 512
# ATTN_DIM = 64
# ENC_DROPOUT = 0.5
# DEC_DROPOUT = 0.5
ENC_EMB_DIM = 32
DEC_EMB_DIM = 32
ENC_HID_DIM = 64
DEC_HID_DIM = 64
ATTN_DIM = 8
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)
attn = Attention(ENC_HID_DIM, DEC_HID_DIM, ATTN_DIM)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)
model = Seq2Seq(enc, dec, device).to(device)
def init_weights(m: nn.Module):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
model.apply(init_weights)
optimizer = optim.Adam(model.parameters())
def count_parameters(model: nn.Module):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'The model has {count_parameters(model):,} trainable parameters')
Note: when scoring the performance of a language translation model in
particular, we have to tell the nn.CrossEntropyLoss
function to
ignore the indices where the target is simply padding.
PAD_IDX = en_vocab.stoi['<pad>']
criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
Finally, we can train and evaluate this model:
import math
import time
def train(model: nn.Module,
iterator: torch.utils.data.DataLoader,
optimizer: optim.Optimizer,
criterion: nn.Module,
clip: float):
model.train()
epoch_loss = 0
for _, (src, trg) in enumerate(iterator):
src, trg = src.to(device), trg.to(device)
optimizer.zero_grad()
output = model(src, trg)
output = output[1:].view(-1, output.shape[-1])
trg = trg[1:].view(-1)
loss = criterion(output, trg)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def evaluate(model: nn.Module,
iterator: torch.utils.data.DataLoader,
criterion: nn.Module):
model.eval()
epoch_loss = 0
with torch.no_grad():
for _, (src, trg) in enumerate(iterator):
src, trg = src.to(device), trg.to(device)
output = model(src, trg, 0) #turn off teacher forcing
output = output[1:].view(-1, output.shape[-1])
trg = trg[1:].view(-1)
loss = criterion(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def epoch_time(start_time: int,
end_time: int):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
N_EPOCHS = 10
CLIP = 1
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss = train(model, train_iter, optimizer, criterion, CLIP)
valid_loss = evaluate(model, valid_iter, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}')
test_loss = evaluate(model, test_iter, criterion)
print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')