.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_intermediate_mario_rl_tutorial.py: Train a Mario-playing RL Agent ================ Authors: `Yuansong Feng `__, `Suraj Subramanian `__, `Howard Wang `__, `Steven Guo `__. This tutorial walks you through the fundamentals of Deep Reinforcement Learning. At the end, you will implement an AI-powered Mario (using `Double Deep Q-Networks `__) that can play the game by itself. Although no prior knowledge of RL is necessary for this tutorial, you can familiarize yourself with these RL `concepts `__, and have this handy `cheatsheet `__ as your companion. The full code is available `here `__. .. figure:: /_static/img/mario.gif :alt: mario .. code-block:: default # !pip install gym-super-mario-bros==7.3.0 import torch from torch import nn from torchvision import transforms as T from PIL import Image import numpy as np from pathlib import Path from collections import deque import random, datetime, os, copy # Gym is an OpenAI toolkit for RL import gym from gym.spaces import Box from gym.wrappers import FrameStack # NES Emulator for OpenAI Gym from nes_py.wrappers import JoypadSpace # Super Mario environment for OpenAI Gym import gym_super_mario_bros RL Definitions """""""""""""""""" **Environment** The world that an agent interacts with and learns from. **Action** :math:`a` : How the Agent responds to the Environment. The set of all possible Actions is called *action-space*. **State** :math:`s` : The current characteristic of the Environment. The set of all possible States the Environment can be in is called *state-space*. **Reward** :math:`r` : Reward is the key feedback from Environment to Agent. It is what drives the Agent to learn and to change its future action. An aggregation of rewards over multiple time steps is called **Return**. **Optimal Action-Value function** :math:`Q^*(s,a)` : Gives the expected return if you start in state :math:`s`, take an arbitrary action :math:`a`, and then for each future time step take the action that maximizes returns. :math:`Q` can be said to stand for the “quality” of the action in a state. We try to approximate this function. Environment """""""""""""""" Initialize Environment ------------------------ In Mario, the environment consists of tubes, mushrooms and other components. When Mario makes an action, the environment responds with the changed (next) state, reward and other info. .. code-block:: default # Initialize Super Mario environment env = gym_super_mario_bros.make("SuperMarioBros-1-1-v0") # Limit the action-space to # 0. walk right # 1. jump right env = JoypadSpace(env, [["right"], ["right", "A"]]) env.reset() next_state, reward, done, info = env.step(action=0) print(f"{next_state.shape},\n {reward},\n {done},\n {info}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none (240, 256, 3), 0, False, {'coins': 0, 'flag_get': False, 'life': 2, 'score': 0, 'stage': 1, 'status': 'small', 'time': 400, 'world': 1, 'x_pos': 40, 'x_pos_screen': 40, 'y_pos': 79} Preprocess Environment ------------------------ Environment data is returned to the agent in ``next_state``. As you saw above, each state is represented by a ``[3, 240, 256]`` size array. Often that is more information than our agent needs; for instance, Mario’s actions do not depend on the color of the pipes or the sky! We use **Wrappers** to preprocess environment data before sending it to the agent. ``GrayScaleObservation`` is a common wrapper to transform an RGB image to grayscale; doing so reduces the size of the state representation without losing useful information. Now the size of each state: ``[1, 240, 256]`` ``ResizeObservation`` downsamples each observation into a square image. New size: ``[1, 84, 84]`` ``SkipFrame`` is a custom wrapper that inherits from ``gym.Wrapper`` and implements the ``step()`` function. Because consecutive frames don’t vary much, we can skip n-intermediate frames without losing much information. The n-th frame aggregates rewards accumulated over each skipped frame. ``FrameStack`` is a wrapper that allows us to squash consecutive frames of the environment into a single observation point to feed to our learning model. This way, we can identify if Mario was landing or jumping based on the direction of his movement in the previous several frames. .. code-block:: default class SkipFrame(gym.Wrapper): def __init__(self, env, skip): """Return only every `skip`-th frame""" super().__init__(env) self._skip = skip def step(self, action): """Repeat action, and sum reward""" total_reward = 0.0 done = False for i in range(self._skip): # Accumulate reward and repeat the same action obs, reward, done, info = self.env.step(action) total_reward += reward if done: break return obs, total_reward, done, info class GrayScaleObservation(gym.ObservationWrapper): def __init__(self, env): super().__init__(env) obs_shape = self.observation_space.shape[:2] self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8) def permute_orientation(self, observation): # permute [H, W, C] array to [C, H, W] tensor observation = np.transpose(observation, (2, 0, 1)) observation = torch.tensor(observation.copy(), dtype=torch.float) return observation def observation(self, observation): observation = self.permute_orientation(observation) transform = T.Grayscale() observation = transform(observation) return observation class ResizeObservation(gym.ObservationWrapper): def __init__(self, env, shape): super().__init__(env) if isinstance(shape, int): self.shape = (shape, shape) else: self.shape = tuple(shape) obs_shape = self.shape + self.observation_space.shape[2:] self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8) def observation(self, observation): transforms = T.Compose( [T.Resize(self.shape), T.Normalize(0, 255)] ) observation = transforms(observation).squeeze(0) return observation # Apply Wrappers to environment env = SkipFrame(env, skip=4) env = GrayScaleObservation(env) env = ResizeObservation(env, shape=84) env = FrameStack(env, num_stack=4) After applying the above wrappers to the environment, the final wrapped state consists of 4 gray-scaled consecutive frames stacked together, as shown above in the image on the left. Each time Mario makes an action, the environment responds with a state of this structure. The structure is represented by a 3-D array of size ``[4, 84, 84]``. .. figure:: /_static/img/mario_env.png :alt: picture Agent """"""""" We create a class ``Mario`` to represent our agent in the game. Mario should be able to: - **Act** according to the optimal action policy based on the current state (of the environment). - **Remember** experiences. Experience = (current state, current action, reward, next state). Mario *caches* and later *recalls* his experiences to update his action policy. - **Learn** a better action policy over time .. code-block:: default class Mario: def __init__(): pass def act(self, state): """Given a state, choose an epsilon-greedy action""" pass def cache(self, experience): """Add the experience to memory""" pass def recall(self): """Sample experiences from memory""" pass def learn(self): """Update online action value (Q) function with a batch of experiences""" pass In the following sections, we will populate Mario’s parameters and define his functions. Act -------------- For any given state, an agent can choose to do the most optimal action (**exploit**) or a random action (**explore**). Mario randomly explores with a chance of ``self.exploration_rate``; when he chooses to exploit, he relies on ``MarioNet`` (implemented in ``Learn`` section) to provide the most optimal action. .. code-block:: default class Mario: def __init__(self, state_dim, action_dim, save_dir): self.state_dim = state_dim self.action_dim = action_dim self.save_dir = save_dir self.use_cuda = torch.cuda.is_available() # Mario's DNN to predict the most optimal action - we implement this in the Learn section self.net = MarioNet(self.state_dim, self.action_dim).float() if self.use_cuda: self.net = self.net.to(device="cuda") self.exploration_rate = 1 self.exploration_rate_decay = 0.99999975 self.exploration_rate_min = 0.1 self.curr_step = 0 self.save_every = 5e5 # no. of experiences between saving Mario Net def act(self, state): """ Given a state, choose an epsilon-greedy action and update value of step. Inputs: state(LazyFrame): A single observation of the current state, dimension is (state_dim) Outputs: action_idx (int): An integer representing which action Mario will perform """ # EXPLORE if np.random.rand() < self.exploration_rate: action_idx = np.random.randint(self.action_dim) # EXPLOIT else: state = state.__array__() if self.use_cuda: state = torch.tensor(state).cuda() else: state = torch.tensor(state) state = state.unsqueeze(0) action_values = self.net(state, model="online") action_idx = torch.argmax(action_values, axis=1).item() # decrease exploration_rate self.exploration_rate *= self.exploration_rate_decay self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate) # increment step self.curr_step += 1 return action_idx Cache and Recall ---------------------- These two functions serve as Mario’s “memory” process. ``cache()``: Each time Mario performs an action, he stores the ``experience`` to his memory. His experience includes the current *state*, *action* performed, *reward* from the action, the *next state*, and whether the game is *done*. ``recall()``: Mario randomly samples a batch of experiences from his memory, and uses that to learn the game. .. code-block:: default class Mario(Mario): # subclassing for continuity def __init__(self, state_dim, action_dim, save_dir): super().__init__(state_dim, action_dim, save_dir) self.memory = deque(maxlen=100000) self.batch_size = 32 def cache(self, state, next_state, action, reward, done): """ Store the experience to self.memory (replay buffer) Inputs: state (LazyFrame), next_state (LazyFrame), action (int), reward (float), done(bool)) """ state = state.__array__() next_state = next_state.__array__() if self.use_cuda: state = torch.tensor(state).cuda() next_state = torch.tensor(next_state).cuda() action = torch.tensor([action]).cuda() reward = torch.tensor([reward]).cuda() done = torch.tensor([done]).cuda() else: state = torch.tensor(state) next_state = torch.tensor(next_state) action = torch.tensor([action]) reward = torch.tensor([reward]) done = torch.tensor([done]) self.memory.append((state, next_state, action, reward, done,)) def recall(self): """ Retrieve a batch of experiences from memory """ batch = random.sample(self.memory, self.batch_size) state, next_state, action, reward, done = map(torch.stack, zip(*batch)) return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze() Learn -------------- Mario uses the `DDQN algorithm `__ under the hood. DDQN uses two ConvNets - :math:`Q_{online}` and :math:`Q_{target}` - that independently approximate the optimal action-value function. In our implementation, we share feature generator ``features`` across :math:`Q_{online}` and :math:`Q_{target}`, but maintain separate FC classifiers for each. :math:`\theta_{target}` (the parameters of :math:`Q_{target}`) is frozen to prevent updation by backprop. Instead, it is periodically synced with :math:`\theta_{online}` (more on this later). Neural Network ~~~~~~~~~~~~~~~~~~ .. code-block:: default class MarioNet(nn.Module): """mini cnn structure input -> (conv2d + relu) x 3 -> flatten -> (dense + relu) x 2 -> output """ def __init__(self, input_dim, output_dim): super().__init__() c, h, w = input_dim if h != 84: raise ValueError(f"Expecting input height: 84, got: {h}") if w != 84: raise ValueError(f"Expecting input width: 84, got: {w}") self.online = nn.Sequential( nn.Conv2d(in_channels=c, out_channels=32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(3136, 512), nn.ReLU(), nn.Linear(512, output_dim), ) self.target = copy.deepcopy(self.online) # Q_target parameters are frozen. for p in self.target.parameters(): p.requires_grad = False def forward(self, input, model): if model == "online": return self.online(input) elif model == "target": return self.target(input) TD Estimate & TD Target ~~~~~~~~~~~~~~~~~~~~~~~~~~ Two values are involved in learning: **TD Estimate** - the predicted optimal :math:`Q^*` for a given state :math:`s` .. math:: {TD}_e = Q_{online}^*(s,a) **TD Target** - aggregation of current reward and the estimated :math:`Q^*` in the next state :math:`s'` .. math:: a' = argmax_{a} Q_{online}(s', a) .. math:: {TD}_t = r + \gamma Q_{target}^*(s',a') Because we don’t know what next action :math:`a'` will be, we use the action :math:`a'` maximizes :math:`Q_{online}` in the next state :math:`s'`. Notice we use the `@torch.no_grad() `__ decorator on ``td_target()`` to disable gradient calculations here (because we don’t need to backpropagate on :math:`\theta_{target}`). .. code-block:: default class Mario(Mario): def __init__(self, state_dim, action_dim, save_dir): super().__init__(state_dim, action_dim, save_dir) self.gamma = 0.9 def td_estimate(self, state, action): current_Q = self.net(state, model="online")[ np.arange(0, self.batch_size), action ] # Q_online(s,a) return current_Q @torch.no_grad() def td_target(self, reward, next_state, done): next_state_Q = self.net(next_state, model="online") best_action = torch.argmax(next_state_Q, axis=1) next_Q = self.net(next_state, model="target")[ np.arange(0, self.batch_size), best_action ] return (reward + (1 - done.float()) * self.gamma * next_Q).float() Updating the model ~~~~~~~~~~~~~~~~~~~~~~ As Mario samples inputs from his replay buffer, we compute :math:`TD_t` and :math:`TD_e` and backpropagate this loss down :math:`Q_{online}` to update its parameters :math:`\theta_{online}` (:math:`\alpha` is the learning rate ``lr`` passed to the ``optimizer``) .. math:: \theta_{online} \leftarrow \theta_{online} + \alpha \nabla(TD_e - TD_t) :math:`\theta_{target}` does not update through backpropagation. Instead, we periodically copy :math:`\theta_{online}` to :math:`\theta_{target}` .. math:: \theta_{target} \leftarrow \theta_{online} .. code-block:: default class Mario(Mario): def __init__(self, state_dim, action_dim, save_dir): super().__init__(state_dim, action_dim, save_dir) self.optimizer = torch.optim.Adam(self.net.parameters(), lr=0.00025) self.loss_fn = torch.nn.SmoothL1Loss() def update_Q_online(self, td_estimate, td_target): loss = self.loss_fn(td_estimate, td_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() def sync_Q_target(self): self.net.target.load_state_dict(self.net.online.state_dict()) Save checkpoint ~~~~~~~~~~~~~~~~~~ .. code-block:: default class Mario(Mario): def save(self): save_path = ( self.save_dir / f"mario_net_{int(self.curr_step // self.save_every)}.chkpt" ) torch.save( dict(model=self.net.state_dict(), exploration_rate=self.exploration_rate), save_path, ) print(f"MarioNet saved to {save_path} at step {self.curr_step}") Putting it all together ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: default class Mario(Mario): def __init__(self, state_dim, action_dim, save_dir): super().__init__(state_dim, action_dim, save_dir) self.burnin = 1e4 # min. experiences before training self.learn_every = 3 # no. of experiences between updates to Q_online self.sync_every = 1e4 # no. of experiences between Q_target & Q_online sync def learn(self): if self.curr_step % self.sync_every == 0: self.sync_Q_target() if self.curr_step % self.save_every == 0: self.save() if self.curr_step < self.burnin: return None, None if self.curr_step % self.learn_every != 0: return None, None # Sample from memory state, next_state, action, reward, done = self.recall() # Get TD Estimate td_est = self.td_estimate(state, action) # Get TD Target td_tgt = self.td_target(reward, next_state, done) # Backpropagate loss through Q_online loss = self.update_Q_online(td_est, td_tgt) return (td_est.mean().item(), loss) Logging -------------- .. code-block:: default import numpy as np import time, datetime import matplotlib.pyplot as plt class MetricLogger: def __init__(self, save_dir): self.save_log = save_dir / "log" with open(self.save_log, "w") as f: f.write( f"{'Episode':>8}{'Step':>8}{'Epsilon':>10}{'MeanReward':>15}" f"{'MeanLength':>15}{'MeanLoss':>15}{'MeanQValue':>15}" f"{'TimeDelta':>15}{'Time':>20}\n" ) self.ep_rewards_plot = save_dir / "reward_plot.jpg" self.ep_lengths_plot = save_dir / "length_plot.jpg" self.ep_avg_losses_plot = save_dir / "loss_plot.jpg" self.ep_avg_qs_plot = save_dir / "q_plot.jpg" # History metrics self.ep_rewards = [] self.ep_lengths = [] self.ep_avg_losses = [] self.ep_avg_qs = [] # Moving averages, added for every call to record() self.moving_avg_ep_rewards = [] self.moving_avg_ep_lengths = [] self.moving_avg_ep_avg_losses = [] self.moving_avg_ep_avg_qs = [] # Current episode metric self.init_episode() # Timing self.record_time = time.time() def log_step(self, reward, loss, q): self.curr_ep_reward += reward self.curr_ep_length += 1 if loss: self.curr_ep_loss += loss self.curr_ep_q += q self.curr_ep_loss_length += 1 def log_episode(self): "Mark end of episode" self.ep_rewards.append(self.curr_ep_reward) self.ep_lengths.append(self.curr_ep_length) if self.curr_ep_loss_length == 0: ep_avg_loss = 0 ep_avg_q = 0 else: ep_avg_loss = np.round(self.curr_ep_loss / self.curr_ep_loss_length, 5) ep_avg_q = np.round(self.curr_ep_q / self.curr_ep_loss_length, 5) self.ep_avg_losses.append(ep_avg_loss) self.ep_avg_qs.append(ep_avg_q) self.init_episode() def init_episode(self): self.curr_ep_reward = 0.0 self.curr_ep_length = 0 self.curr_ep_loss = 0.0 self.curr_ep_q = 0.0 self.curr_ep_loss_length = 0 def record(self, episode, epsilon, step): mean_ep_reward = np.round(np.mean(self.ep_rewards[-100:]), 3) mean_ep_length = np.round(np.mean(self.ep_lengths[-100:]), 3) mean_ep_loss = np.round(np.mean(self.ep_avg_losses[-100:]), 3) mean_ep_q = np.round(np.mean(self.ep_avg_qs[-100:]), 3) self.moving_avg_ep_rewards.append(mean_ep_reward) self.moving_avg_ep_lengths.append(mean_ep_length) self.moving_avg_ep_avg_losses.append(mean_ep_loss) self.moving_avg_ep_avg_qs.append(mean_ep_q) last_record_time = self.record_time self.record_time = time.time() time_since_last_record = np.round(self.record_time - last_record_time, 3) print( f"Episode {episode} - " f"Step {step} - " f"Epsilon {epsilon} - " f"Mean Reward {mean_ep_reward} - " f"Mean Length {mean_ep_length} - " f"Mean Loss {mean_ep_loss} - " f"Mean Q Value {mean_ep_q} - " f"Time Delta {time_since_last_record} - " f"Time {datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S')}" ) with open(self.save_log, "a") as f: f.write( f"{episode:8d}{step:8d}{epsilon:10.3f}" f"{mean_ep_reward:15.3f}{mean_ep_length:15.3f}{mean_ep_loss:15.3f}{mean_ep_q:15.3f}" f"{time_since_last_record:15.3f}" f"{datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'):>20}\n" ) for metric in ["ep_rewards", "ep_lengths", "ep_avg_losses", "ep_avg_qs"]: plt.plot(getattr(self, f"moving_avg_{metric}")) plt.savefig(getattr(self, f"{metric}_plot")) plt.clf() Let’s play! """"""""""""""" In this example we run the training loop for 10 episodes, but for Mario to truly learn the ways of his world, we suggest running the loop for at least 40,000 episodes! .. code-block:: default use_cuda = torch.cuda.is_available() print(f"Using CUDA: {use_cuda}") print() save_dir = Path("checkpoints") / datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") save_dir.mkdir(parents=True) mario = Mario(state_dim=(4, 84, 84), action_dim=env.action_space.n, save_dir=save_dir) logger = MetricLogger(save_dir) episodes = 10 for e in range(episodes): state = env.reset() # Play the game! while True: # Run agent on the state action = mario.act(state) # Agent performs action next_state, reward, done, info = env.step(action) # Remember mario.cache(state, next_state, action, reward, done) # Learn q, loss = mario.learn() # Logging logger.log_step(reward, loss, q) # Update state state = next_state # Check if end of game if done or info["flag_get"]: break logger.log_episode() if e % 20 == 0: logger.record(episode=e, epsilon=mario.exploration_rate, step=mario.curr_step) .. image:: /intermediate/images/sphx_glr_mario_rl_tutorial_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Using CUDA: True Episode 0 - Step 344 - Epsilon 0.9999140036871328 - Mean Reward 668.0 - Mean Length 344.0 - Mean Loss 0.0 - Mean Q Value 0.0 - Time Delta 10.39 - Time 2021-04-17T00:30:12 Conclusion """"""""""""""" In this tutorial, we saw how we can use PyTorch to train a game-playing AI. You can use the same methods to train an AI to play any of the games at the `OpenAI gym `__. Hope you enjoyed this tutorial, feel free to reach us at `our github `__! .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 16.562 seconds) .. _sphx_glr_download_intermediate_mario_rl_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: mario_rl_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: mario_rl_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_