.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_beginner_transfer_learning_tutorial.py: Transfer Learning for Computer Vision Tutorial ============================================== **Author**: `Sasank Chilamkurthy `_ In this tutorial, you will learn how to train a convolutional neural network for image classification using transfer learning. You can read more about the transfer learning at `cs231n notes `__ Quoting these notes, In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest. These two major transfer learning scenarios look as follows: - **Finetuning the convnet**: Instead of random initializaion, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of the training looks as usual. - **ConvNet as fixed feature extractor**: Here, we will freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained. .. code-block:: default # License: BSD # Author: Sasank Chilamkurthy from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy plt.ion() # interactive mode Load Data --------- We will use torchvision and torch.utils.data packages for loading the data. The problem we're going to solve today is to train a model to classify **ants** and **bees**. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well. This dataset is a very small subset of imagenet. .. Note :: Download the data from `here `_ and extract it to the current directory. .. code-block:: default # Data augmentation and normalization for training # Just normalization for validation data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'data/hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") Visualize a few images ^^^^^^^^^^^^^^^^^^^^^^ Let's visualize a few training images so as to understand the data augmentations. .. code-block:: default def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) .. image:: /beginner/images/sphx_glr_transfer_learning_tutorial_001.png :class: sphx-glr-single-img Training the model ------------------ Now, let's write a general function to train a model. Here, we will illustrate: - Scheduling the learning rate - Saving the best model In the following, parameter ``scheduler`` is an LR scheduler object from ``torch.optim.lr_scheduler``. .. code-block:: default def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model Visualizing the model predictions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Generic function to display predictions for a few images .. code-block:: default def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) Finetuning the convnet ---------------------- Load a pretrained model and reset final fully connected layer. .. code-block:: default model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features # Here the size of each output sample is set to 2. # Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)). model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) Train and evaluate ^^^^^^^^^^^^^^^^^^ It should take around 15-25 min on CPU. On GPU though, it takes less than a minute. .. code-block:: default model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Epoch 0/24 ---------- train Loss: 0.6567 Acc: 0.6967 val Loss: 0.3229 Acc: 0.8889 Epoch 1/24 ---------- train Loss: 0.5948 Acc: 0.7336 val Loss: 0.1969 Acc: 0.9412 Epoch 2/24 ---------- train Loss: 0.4150 Acc: 0.8402 val Loss: 0.2588 Acc: 0.9150 Epoch 3/24 ---------- train Loss: 0.4527 Acc: 0.8238 val Loss: 0.2312 Acc: 0.9346 Epoch 4/24 ---------- train Loss: 0.5157 Acc: 0.8156 val Loss: 0.3275 Acc: 0.8693 Epoch 5/24 ---------- train Loss: 0.5087 Acc: 0.7623 val Loss: 0.2670 Acc: 0.9020 Epoch 6/24 ---------- train Loss: 0.4585 Acc: 0.8156 val Loss: 0.1689 Acc: 0.9346 Epoch 7/24 ---------- train Loss: 0.3337 Acc: 0.8402 val Loss: 0.1575 Acc: 0.9281 Epoch 8/24 ---------- train Loss: 0.2701 Acc: 0.8730 val Loss: 0.1475 Acc: 0.9412 Epoch 9/24 ---------- train Loss: 0.3255 Acc: 0.8443 val Loss: 0.1745 Acc: 0.9281 Epoch 10/24 ---------- train Loss: 0.2576 Acc: 0.8893 val Loss: 0.1607 Acc: 0.9346 Epoch 11/24 ---------- train Loss: 0.3904 Acc: 0.8443 val Loss: 0.1533 Acc: 0.9608 Epoch 12/24 ---------- train Loss: 0.2795 Acc: 0.8934 val Loss: 0.1522 Acc: 0.9477 Epoch 13/24 ---------- train Loss: 0.2701 Acc: 0.8811 val Loss: 0.1553 Acc: 0.9412 Epoch 14/24 ---------- train Loss: 0.3131 Acc: 0.8689 val Loss: 0.1761 Acc: 0.9477 Epoch 15/24 ---------- train Loss: 0.3001 Acc: 0.8525 val Loss: 0.1406 Acc: 0.9412 Epoch 16/24 ---------- train Loss: 0.3006 Acc: 0.8566 val Loss: 0.1473 Acc: 0.9281 Epoch 17/24 ---------- train Loss: 0.3371 Acc: 0.8402 val Loss: 0.1472 Acc: 0.9542 Epoch 18/24 ---------- train Loss: 0.3147 Acc: 0.8811 val Loss: 0.1381 Acc: 0.9542 Epoch 19/24 ---------- train Loss: 0.3374 Acc: 0.8402 val Loss: 0.1452 Acc: 0.9346 Epoch 20/24 ---------- train Loss: 0.2309 Acc: 0.9098 val Loss: 0.1732 Acc: 0.9346 Epoch 21/24 ---------- train Loss: 0.2467 Acc: 0.8811 val Loss: 0.1485 Acc: 0.9346 Epoch 22/24 ---------- train Loss: 0.2280 Acc: 0.9016 val Loss: 0.1526 Acc: 0.9346 Epoch 23/24 ---------- train Loss: 0.3162 Acc: 0.8648 val Loss: 0.1422 Acc: 0.9346 Epoch 24/24 ---------- train Loss: 0.2524 Acc: 0.9016 val Loss: 0.1450 Acc: 0.9477 Training complete in 0m 48s Best val Acc: 0.960784 .. code-block:: default visualize_model(model_ft) .. image:: /beginner/images/sphx_glr_transfer_learning_tutorial_002.png :class: sphx-glr-single-img ConvNet as fixed feature extractor ---------------------------------- Here, we need to freeze all the network except the final layer. We need to set ``requires_grad == False`` to freeze the parameters so that the gradients are not computed in ``backward()``. You can read more about this in the documentation `here `__. .. code-block:: default model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opposed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1) Train and evaluate ^^^^^^^^^^^^^^^^^^ On CPU this will take about half the time compared to previous scenario. This is expected as gradients don't need to be computed for most of the network. However, forward does need to be computed. .. code-block:: default model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Epoch 0/24 ---------- train Loss: 0.6548 Acc: 0.6434 val Loss: 0.3279 Acc: 0.8627 Epoch 1/24 ---------- train Loss: 0.4907 Acc: 0.7787 val Loss: 0.3273 Acc: 0.8366 Epoch 2/24 ---------- train Loss: 0.4351 Acc: 0.8033 val Loss: 0.2670 Acc: 0.8758 Epoch 3/24 ---------- train Loss: 0.5002 Acc: 0.8033 val Loss: 0.1670 Acc: 0.9542 Epoch 4/24 ---------- train Loss: 0.5262 Acc: 0.7828 val Loss: 0.1780 Acc: 0.9542 Epoch 5/24 ---------- train Loss: 0.4103 Acc: 0.7992 val Loss: 0.2593 Acc: 0.8889 Epoch 6/24 ---------- train Loss: 0.6280 Acc: 0.7377 val Loss: 0.1740 Acc: 0.9542 Epoch 7/24 ---------- train Loss: 0.3855 Acc: 0.8238 val Loss: 0.1810 Acc: 0.9542 Epoch 8/24 ---------- train Loss: 0.4041 Acc: 0.8033 val Loss: 0.1905 Acc: 0.9346 Epoch 9/24 ---------- train Loss: 0.4469 Acc: 0.8156 val Loss: 0.1858 Acc: 0.9346 Epoch 10/24 ---------- train Loss: 0.3172 Acc: 0.8689 val Loss: 0.1610 Acc: 0.9608 Epoch 11/24 ---------- train Loss: 0.3104 Acc: 0.8402 val Loss: 0.1924 Acc: 0.9346 Epoch 12/24 ---------- train Loss: 0.4036 Acc: 0.8361 val Loss: 0.1846 Acc: 0.9477 Epoch 13/24 ---------- train Loss: 0.3462 Acc: 0.8361 val Loss: 0.1869 Acc: 0.9281 Epoch 14/24 ---------- train Loss: 0.4521 Acc: 0.8033 val Loss: 0.1832 Acc: 0.9346 Epoch 15/24 ---------- train Loss: 0.3577 Acc: 0.8238 val Loss: 0.1862 Acc: 0.9608 Epoch 16/24 ---------- train Loss: 0.3645 Acc: 0.8730 val Loss: 0.1906 Acc: 0.9542 Epoch 17/24 ---------- train Loss: 0.3366 Acc: 0.8607 val Loss: 0.1729 Acc: 0.9477 Epoch 18/24 ---------- train Loss: 0.3793 Acc: 0.8279 val Loss: 0.2263 Acc: 0.8954 Epoch 19/24 ---------- train Loss: 0.3282 Acc: 0.8607 val Loss: 0.1634 Acc: 0.9608 Epoch 20/24 ---------- train Loss: 0.2573 Acc: 0.8975 val Loss: 0.2018 Acc: 0.9346 Epoch 21/24 ---------- train Loss: 0.3195 Acc: 0.8893 val Loss: 0.1804 Acc: 0.9542 Epoch 22/24 ---------- train Loss: 0.3004 Acc: 0.8770 val Loss: 0.1810 Acc: 0.9608 Epoch 23/24 ---------- train Loss: 0.2837 Acc: 0.8893 val Loss: 0.1755 Acc: 0.9608 Epoch 24/24 ---------- train Loss: 0.4070 Acc: 0.8156 val Loss: 0.2219 Acc: 0.9085 Training complete in 0m 37s Best val Acc: 0.960784 .. code-block:: default visualize_model(model_conv) plt.ioff() plt.show() .. image:: /beginner/images/sphx_glr_transfer_learning_tutorial_003.png :class: sphx-glr-single-img Further Learning ----------------- If you would like to learn more about the applications of transfer learning, checkout our `Quantized Transfer Learning for Computer Vision Tutorial `_. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 30.022 seconds) .. _sphx_glr_download_beginner_transfer_learning_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: transfer_learning_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: transfer_learning_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_