.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_beginner_blitz_tensor_tutorial.py: Tensors -------------------------------------------- Tensors are a specialized data structure that are very similar to arrays and matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model, as well as the model’s parameters. Tensors are similar to NumPy’s ndarrays, except that tensors can run on GPUs or other specialized hardware to accelerate computing. If you’re familiar with ndarrays, you’ll be right at home with the Tensor API. If not, follow along in this quick API walkthrough. .. code-block:: default import torch import numpy as np Tensor Initialization ~~~~~~~~~~~~~~~~~~~~~ Tensors can be initialized in various ways. Take a look at the following examples: **Directly from data** Tensors can be created directly from data. The data type is automatically inferred. .. code-block:: default data = [[1, 2],[3, 4]] x_data = torch.tensor(data) **From a NumPy array** Tensors can be created from NumPy arrays (and vice versa - see :ref:`bridge-to-np-label`). .. code-block:: default np_array = np.array(data) x_np = torch.from_numpy(np_array) **From another tensor:** The new tensor retains the properties (shape, datatype) of the argument tensor, unless explicitly overridden. .. code-block:: default x_ones = torch.ones_like(x_data) # retains the properties of x_data print(f"Ones Tensor: \n {x_ones} \n") x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data print(f"Random Tensor: \n {x_rand} \n") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Ones Tensor: tensor([[1, 1], [1, 1]]) Random Tensor: tensor([[0.6878, 0.3842], [0.0470, 0.6019]]) **With random or constant values:** ``shape`` is a tuple of tensor dimensions. In the functions below, it determines the dimensionality of the output tensor. .. code-block:: default shape = (2,3,) rand_tensor = torch.rand(shape) ones_tensor = torch.ones(shape) zeros_tensor = torch.zeros(shape) print(f"Random Tensor: \n {rand_tensor} \n") print(f"Ones Tensor: \n {ones_tensor} \n") print(f"Zeros Tensor: \n {zeros_tensor}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Random Tensor: tensor([[0.6782, 0.2752, 0.6307], [0.5116, 0.0513, 0.9488]]) Ones Tensor: tensor([[1., 1., 1.], [1., 1., 1.]]) Zeros Tensor: tensor([[0., 0., 0.], [0., 0., 0.]]) -------------- Tensor Attributes ~~~~~~~~~~~~~~~~~ Tensor attributes describe their shape, datatype, and the device on which they are stored. .. code-block:: default tensor = torch.rand(3,4) print(f"Shape of tensor: {tensor.shape}") print(f"Datatype of tensor: {tensor.dtype}") print(f"Device tensor is stored on: {tensor.device}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Shape of tensor: torch.Size([3, 4]) Datatype of tensor: torch.float32 Device tensor is stored on: cpu -------------- Tensor Operations ~~~~~~~~~~~~~~~~~ Over 100 tensor operations, including transposing, indexing, slicing, mathematical operations, linear algebra, random sampling, and more are comprehensively described `here `__. Each of them can be run on the GPU (at typically higher speeds than on a CPU). If you’re using Colab, allocate a GPU by going to Edit > Notebook Settings. .. code-block:: default # We move our tensor to the GPU if available if torch.cuda.is_available(): tensor = tensor.to('cuda') Try out some of the operations from the list. If you're familiar with the NumPy API, you'll find the Tensor API a breeze to use. **Standard numpy-like indexing and slicing:** .. code-block:: default tensor = torch.ones(4, 4) tensor[:,1] = 0 print(tensor) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]) **Joining tensors** You can use ``torch.cat`` to concatenate a sequence of tensors along a given dimension. See also `torch.stack `__, another tensor joining op that is subtly different from ``torch.cat``. .. code-block:: default t1 = torch.cat([tensor, tensor, tensor], dim=1) print(t1) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.], [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]]) **Multiplying tensors** .. code-block:: default # This computes the element-wise product print(f"tensor.mul(tensor) \n {tensor.mul(tensor)} \n") # Alternative syntax: print(f"tensor * tensor \n {tensor * tensor}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor.mul(tensor) tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]) tensor * tensor tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]) This computes the matrix multiplication between two tensors .. code-block:: default print(f"tensor.matmul(tensor.T) \n {tensor.matmul(tensor.T)} \n") # Alternative syntax: print(f"tensor @ tensor.T \n {tensor @ tensor.T}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor.matmul(tensor.T) tensor([[3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.]]) tensor @ tensor.T tensor([[3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.], [3., 3., 3., 3.]]) **In-place operations** Operations that have a ``_`` suffix are in-place. For example: ``x.copy_(y)``, ``x.t_()``, will change ``x``. .. code-block:: default print(tensor, "\n") tensor.add_(5) print(tensor) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor([[1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]) tensor([[6., 5., 6., 6.], [6., 5., 6., 6.], [6., 5., 6., 6.], [6., 5., 6., 6.]]) .. note:: In-place operations save some memory, but can be problematic when computing derivatives because of an immediate loss of history. Hence, their use is discouraged. -------------- .. _bridge-to-np-label: Bridge with NumPy ~~~~~~~~~~~~~~~~~ Tensors on the CPU and NumPy arrays can share their underlying memory locations, and changing one will change the other. Tensor to NumPy array ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: default t = torch.ones(5) print(f"t: {t}") n = t.numpy() print(f"n: {n}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none t: tensor([1., 1., 1., 1., 1.]) n: [1. 1. 1. 1. 1.] A change in the tensor reflects in the NumPy array. .. code-block:: default t.add_(1) print(f"t: {t}") print(f"n: {n}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none t: tensor([2., 2., 2., 2., 2.]) n: [2. 2. 2. 2. 2.] NumPy array to Tensor ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: default n = np.ones(5) t = torch.from_numpy(n) Changes in the NumPy array reflects in the tensor. .. code-block:: default np.add(n, 1, out=n) print(f"t: {t}") print(f"n: {n}") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64) n: [2. 2. 2. 2. 2.] .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.101 seconds) .. _sphx_glr_download_beginner_blitz_tensor_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: tensor_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: tensor_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_